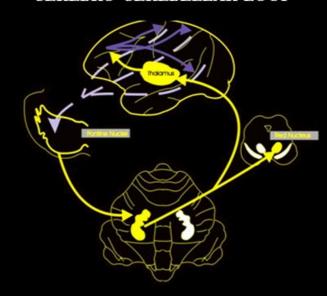


6th winter seminar on dementia and neurodegenerative disorders

Cerebellar contribution to cognitive impairment in Alzheimer Disease:
A resting-state functional connectivity study

Giusy Olivito^{1,2}, L. Serra², C. Marra³, C. Caltagirone^{4,5}, M. Cercignani^{2,6}, M. Bozzali ^{2,6}

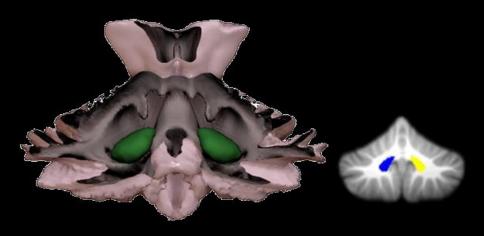
CEREBELLAR ATROPHY IN ALZHEIMER DISEASE



Research report

Cerebellar atrophy in Alzheimer's disease—clinicopathological correlations

Jerzy Wegiel ^{a, *}, Henryk M. Wisniewski ^a, Jerzy Dziewiatkowski ^b, Eulalia Badmajew ^a, Michal Tarnawski ^a, Barry Reisberg ^c, Bogdan Mlodzik ^c, Mony J. De Leon ^c, Douglas C. Miller ^d


Particular involvement of the Crus I

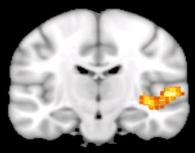
Middleton and Strick, 1997

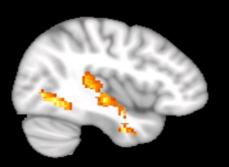
To assess FC of the DN and the relationship between FC changes and memory impairment in AD

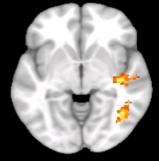
CEREBELLAR DENTATE NUCLEUS

- 78 AD patients and 58 healthy subjects (HS) were recruited and underwent a RS-fMRI at 3T.
- DN as mask for the SEED BASED ANALYSIS
- Memory impairment was assessed as expressed by mean z-scores
- Correlational analysis

BACKGROUN


AIM&METHO DS


RESULTS


DISCUSSION

Functional Connectivity analysis

AD>HS

Inferior temporal pole (IFP) and superior temporal gyrus,(STG) the right temporo-occipital pole (TOP) and lateral occipital cortex (LOC)(FWE 0.05)

Memory impairment

Negative correlation between REY_I & fREY_D and STG

EMem_D and TOP

BACKGROUN AIM&METHO R D DS

RESULTS

DISCUSSION

This study demonstrates a selective pattern of increased FC between the left DN and the right medial temporal lobe known to be critically involved in cognitive/memory impairment typically observed in AD.

Together with previous findings of cerebellar atrophy in AD, this pattern of increased FC suggests a decrease of the inhibitory control which is normally exerted by the cerebellar cortex on the DN, thus <u>contributing</u> to the cortical dysfunction in brain areas critically implicated in AD symptoms.

